Integer domination of Cartesian product graphs

نویسندگان

  • K. Choudhary
  • Susan Margulies
  • Illya V. Hicks
چکیده

Given a graph G, a dominating set D is a set of vertices such that any vertex not in D has at least one neighbor in D. A {k}-dominating multiset Dk is a multiset of vertices such that any vertex in G has at least k vertices from its closed neighborhood in Dk when counted with multiplicity. In this paper, we utilize the approach developed by Clark and Suen (2000) to prove a ‘‘Vizing-like’’ inequality onminimum {k}-dominatingmultisets of graphs G,H and the Cartesian product graph G H . Specifically, denoting the size of a minimum {k}-dominating multiset as γ{k}(G), we demonstrate that γ{k}(G)γ{k}(H) ≤ 2k γ{k}(G H). Published by Elsevier B.V.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the super domination number of graphs

The open neighborhood of a vertex $v$ of a graph $G$ is the set $N(v)$ consisting of all vertices adjacent to $v$ in $G$. For $Dsubseteq V(G)$, we define $overline{D}=V(G)setminus D$. A set $Dsubseteq V(G)$ is called a super dominating set of $G$ if for every vertex $uin overline{D}$, there exists $vin D$ such that $N(v)cap overline{D}={u}$. The super domination number of $G$ is the minimum car...

متن کامل

On independent domination numbers of grid and toroidal grid directed graphs

A subset $S$ of vertex set $V(D)$ is an {em indpendent dominating set} of $D$ if $S$ is both an independent and a dominating set of $D$. The {em indpendent domination number}, $i(D)$ is the cardinality of the smallest independent dominating set of $D$. In this paper we calculate the independent domination number of the { em cartesian product} of two {em directed paths} $P_m$ and $P_n$ for arbi...

متن کامل

A survey on graphs which have equal domination and closed neighborhood packing numbers

Vizing’s conjecture on the Cartesian product G H of two graphs, γ(G H) ≥ γ(G)γ(H), will hold for all graphs G if the domination and (closed neighborhood) packing number of G are equal. By using the theory of integer programming, we state known sufficient conditions for when the packing number and the domination number of a graph are equal. We also give a sufficient condition using the theory of...

متن کامل

Vizing's Conjecture for Graphs with Domination Number 3 - a New Proof

Vizing’s conjecture from 1968 asserts that the domination number of the Cartesian product of two graphs is at least as large as the product of their domination numbers. In this note we use a new, transparent approach to prove Vizing’s conjecture for graphs with domination number 3; that is, we prove that for any graph G with γ(G) = 3 and an arbitrary graph H, γ(G H) > 3γ(H).

متن کامل

A Note on Total and Paired Domination of Cartesian Product Graphs

A dominating set D for a graph G is a subset of V (G) such that any vertex not in D has at least one neighbor in D. The domination number γ(G) is the size of a minimum dominating set in G. Vizing’s conjecture from 1968 states that for the Cartesian product of graphs G and H, γ(G)γ(H) ≤ γ(G H), and Clark and Suen (2000) proved that γ(G)γ(H) ≤ 2γ(G H). In this paper, we modify the approach of Cla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 338  شماره 

صفحات  -

تاریخ انتشار 2015